

Cząsteczki

Przybliżenia

Jądra atomowe są dziesiątki czy nawet setki tysięcy cięższe od elektronów, więc jądra poruszają się znacznie wolniej niż elektrony. Jądra nieskończenie ciężkie – pomijamy energię kinetyczną jąder

 $\hat{H}_{el}(\vec{r},\vec{R})\Psi^k_{el}(\vec{r},\vec{R}) = E^k_{el}\Psi^k_{el}(\vec{r},\vec{R})$

R- traktujemy jako ustalony parametr k – zbiór liczb kwantowych charakteryzujących dany stan elektronowy $E^k_{el}(R)$ – energie elektronowe różnych stanów k jako funkcje położeń jąder

Cząsteczki

Przybliżenia i, j – elektrony

N, K - atomy

 $[\hat{T}_{N} + E_{el}^{n}(\vec{R})]\chi^{n}(\vec{R}) + \chi^{n}(\vec{R})\int \Psi_{el}^{n}(\vec{r},\vec{R})\hat{T}_{N}\Psi_{el}^{n}(\vec{r},\vec{R})d\vec{r} = E\chi^{n}(\vec{R})$

Każdemu stanowi elektronów odpowiada określony stan jąder. $\Psi(\vec{r},\vec{R}) = \chi^n(\vec{R})\Psi_{el}^n(\vec{r},\vec{R})$

Cząsteczki

Przybliżenia

i,j – elektrony N, K - atomy

 $[\hat{T}_{N} + E_{el}^{n}(\vec{R})]\chi^{n}(\vec{R}) + \chi^{n}(\vec{R})\int \Psi_{el}^{n}(\vec{r},\vec{R})\hat{T}_{N}\Psi_{el}^{n}(\vec{r},\vec{R})d\vec{r} = E\chi^{n}(\vec{R})$

Każdemu stanowi elektronów odpowiada określony stan jąder.

$$\Psi(\vec{r},\vec{R}) = \chi^n(\vec{R})\Psi^n_{el}(\vec{r},\vec{R})$$

Przybliżenie 2:

Można pominąć wyrazy zawierające różniczkowanie funkcji elektronowej po współrzędnych jądrowych, bo zmiana położenia jąder słabo wpływa na stan elektronów.

Metoda pola samouzgodnionego

Przybliżenia

Każdy elektron porusza się w polu elektrostatycznym wytworzonym przez ładunki nieruchomych

Metoda pola samouzgodnionego

Metoda orbitali molekularnych (MO)

Dla każdego orbitalu atomowego φA początek układu współrzędnych jest w innym punkcie (orbitale są centrowane na różnych jądrach atomowych). Metodę tę nazywa się **LCAO-MO** (Linear **C**ombination of **A**tomic **O**rbitals).

"Teoretycznie" można brać dowolne kombinacje orbitali atomowych, ale w rzeczywistości bierzemy pewne "właściwe" (wynikające z symetrii układu – teoria grup).

Elektronowa funkcja falowa w postaci iloczynu orbitali molekularnych nie jest ścisłą funkcją własną hamiltonianu, ponieważ nie uwzględnia korelacji ruchów elektronów.

Można tę funkcję poprawić przez dodanie wyrazów odpowiadających kombinacjom innych orbitali atomowych (innym konfiguracjom atomowym). Metoda ta nosi nazwę oddziaływania konfiguracji – CI (Configuration Interaction)

W najdokładniejszych obliczeniach elektronowa funkcja falowa dla stanu podstawowego cząsteczki wodoru H2 uwzględnia 100 konfiguracji atomowych (W. Kołos).

$$\Psi_i(\vec{r}_i) = \sum_A c_A^i \varphi_A(\vec{r}_i)$$

Cząsteczki

Dwuatomowe cząsteczki homojądrowe np. H₂, Li₂, N₂, O₂ Ponieważ cząsteczka jest dwuatomowa szukamy kombinacji dwóch orbitali.

$$\begin{split} \Psi &= c_A \varphi_A + c_B \varphi_B \\ \text{Skoro jądra są jednakowe:} \quad \left| c_A \right|^2 = \left| c_{|B} \right|^2 \Longrightarrow c_A = \pm c_B \\ \Psi_+ &= N_+ (\varphi_A + \varphi_B) \\ \Psi_- &= N_- (\varphi_A - \varphi_B) \\ S &= \int \varphi_A \varphi_B d\bar{r} \qquad \text{Catka przekrycia} \\ N_+ &= \frac{1}{\sqrt{2(1+S)}}, N_- = \frac{1}{\sqrt{2(1-S)}} \end{split}$$

н	ybry	dyzac	ja i całł	C: ki przyk	ząste 	eczk	Atomic orbitals combined	Hybrid orbitals formad sp hybrid (2 orbitals) z	Bonding electron poirs and lone poirs around central atom	VSEPR geometry
	A summary of hybrid orbitals, values of hybrid orbitals, values of the second structures, Trigonal Tetrahedral			ance bond theory, VSEPR, and octet rule. Trigonal	ction2.php	1 s orbital & 1 p orbital		2	linear	
.science.uwate rloo.ca/~cchieh/cact/c1 20/fhybrid.html	sp BeH2 BeF2 CO2	planar sp sp ² sp BeH2 BH3 CF BeF2 BF3 CF CO2 CH2O CC HCN (>C=O) CH3 HC*CH >C=C< NH CO3 ² :NI benzene :Pl graphite :SO	sp ³ CH4 CF4 CCl4	opyramidal dsp ³ PF5 PCl5 PFCl4	d ² sp ³ SF ₆ IOF ₅ PF ₆ ⁻ SiF ₆ ²⁻ :BrF ₅ :IF ₅ ::XeF ₄	com/chemistry/organicchemistry1/se	1 s orbital & 2 p orbitals	sp² hybrid (3 orbitals)	3	trigonal planar
	HCN HC°CH		CH ₃ Cl NH ₄ ⁺ :NH ₃ :PF ₃ :SOF ₂	:SF4 :TeF4 ::CIF3 ::BrF3 :::XeF2			1 s urbitul & 3 p orbitols	sp3 hybrid (4 orbitals)	4	setrohedrol
	fullerenes •NO2 N3 ⁻ :OO2 (O3) :SO2	::OH2 ::SF2 SiO4 ⁴	2 :::I3 2 (:::I I2') 4 :::ICl2'		charts.sparknotes.	1 s orbital & 3 p orbitals & 1 d orbital	dsp3 hybrid (S orbitals)	5	trigonal bipyramide	
http://www	• a lone o	SO ₃	PO4 ⁻ SO4 ²⁻ ClO4 ⁻ : a lone els	ectron pair		http://spark	1 s orbital & 3 p orbitals & 2 d orbitals	d ² sp ³ hybrid (6 orbitals)	6	octahedral

